
2. The Steady State and the Diffusion Equation

The Neutron Field

• Basic field quantity in reactor physics is the neutron angular flux density distribution:
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    flux in the reactor at time t.

• Need to solve the transport equation for an accurate estimate of local reaction rates,
particularly near fuel rods and strong neutron absorbers.  At steady state, we have:
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• Domain is large and heterogeneous, with extremely complex energy dependence of
cross sections

• Transport equation cannot be applied to the entire domain, yet it is required for
accurate estimate of local reaction rates.  Therefore,

⇒ task must be segmented

⇒ unit cells with reflective boundary conditions

⇒ transport theory within unit cells

⇒ diffusion theory for global flux distribution in reactor



Transport Equation

• At steady state, within the phase-space elementary volume, neutron losses (L.H.S.)
are equal to neutron production (R.H.S.)
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1) elastic scattering
2) inelastic scattering
3) (n, 2n),…
4) fission

• Fission is ISOTROPIC
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(Note:  We have neglected the delayed neutron source)



Separation of cell and reactor calculations

Multi-group
Transport Theory

(2D and 3D)

- local reaction rates
- nuclide depletion

Few-group
Diffusion Theory

(3D)

- macroscopic flux distribution
- reactor design
- fuel management



The DRAGON Neutron Transport Code

Evaluated Nuclear Data File

Construct x-section library

69 or 89 group libraries of microscopic x-
sections

- solve 2D transport equation using Collision
Probability (CP) method

- geometry - Bn heterogeneous model for axial leakage
and directional diffusion coefficients (critical

- materials buckling search)
- solve depletion equations as function of time

(burnup)

- COMPO : composition files containing
reaction rates by region, fuel composition,
- Condensed (few groups) homogenized

macroscopic x-sections, as a function of
burnup

• entirely developed at Ecole Polytechnique
• many options cartesian, hexagonal geometry

clusters, cylinders

• can also solve 3D Transport problems in “supercell” geometries, required for
calculating properties of reactivity mechanisms

NJOY

ENDF-B
(5,6)

DRAGLIBWIMSLIB

DRAGON

1 2
…



The Scalar Flux

• The angular flux density is of no interest per se.

• The ultimate objective is to determine the fission rate (power). Since fission is
isotropic, we have:
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• The neutron scalar flux is the actual quantity of interest for the neutron field in the
reactor.  It is formally related to the angular density by:
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• The scalar flux distribution will be obtained directly by solving the diffusion equation
over the entire reactor.

• Reaction rates are conserved by using appropriately homogenized macroscopic
cross sections for each unit cell in the reactor.

• The homogenized cross sections are obtained from the transport calculations in the
unit cells (using transport codes such as WIMS, APPOLLO or DRAGON).

Note:
• Advanced Monte Carlo methods can be used to solve accurately the neutron field

over an entire domain in transport theory (no approximations).  However, this
stochastic approach is presently limited to small systems, and is not practical to deal

with the problem of nuclide depletion (fuel management).



Neutron Balance and the Diffusion Equation

• By integrating the transport equation over all angles, we obtain an equation for the
scalar flux density which can be solved over the entire domain.  This will yield the
required neutron balance equation for the reactor.

− In time-dependent form, we must account for:

− The delayed neutron source Sd, which varies locally according to the
concentration of the delayed neutron precursors;

− The presence of any external source of neutrons, S, which might be placed in the
reactor (e.g. at startup).  This source, if it is present, will produce a fixed number
of neutrons per unit time, independent of the current state of the reactor.

− The local production of prompt fission neutrons, proportional to the instantaneous
fission rate.

• One obtains the continuity equation:
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External Source
Neutrons

Prompt Neutrons Delayed Neutrons

• This equation is exact (no approximations), but contains an additional independent
variable, the neutron current J, which is not simply related to the scalar flux.

• We can close the system by making the diffusion approximation (Fick’s Law):

to obtain the time-dependent diffusion equation.
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The Diffusion Equation

• For clarity, the diffusion equation can be put in operator notation.  In practice, it
would be discretized and the operators would appear as matrices:
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• The delayed neutron source results from the radioactive decay of the precursors.
Assuming that there are K precursors, with decay constants λk , we can write:
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where χdk is the delayed neutron emission spectrum (different from the prompt

neutron emission spectrum χ p ) and where the precursor concentrations are given

by the precursor depletion equations:

∂Ck (
r
r , t)

∂t
= −λkCk (

r
r ,t) + d ′E

0

∞

∫ νdkΣ f (
r
r , ′E ,t)

• We note that the delayed neutron source is not completely independent of the scalar
flux (it is a function of the flux history).  The precursor equations are therefore
coupled to the diffusion equation, and must be solved simultaneously.

• Interpretation:

The diffusion equation simply states that the rate of change of the neutron scalar flux at
position

r
r  for neutrons of energy E  is the result of differences between:

- The production of fission neutrons (prompt operator Fpφ  and the delayed source

S
d
), plus any external source of neutrons S, if present, and

- The removal of neutrons (operatorMφ ) via absorption and scattering plus net

leakage of neutrons to other points in the reactor;

- It is the presence of the leakage term (−
r
∇ ⋅D

r
∇φ ) in operator M that introduces the

spatial coupling between points in the reactor and provides for a continuous
distribution of the flux.



TIME DEPENDENT DIFFUSION EQUATION

• Operator notation (continuous)
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• In practice we use themultigroup formulation (matrix notation, discrete energy
groups)
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DIFFUSION EQUATION

Example: 2 energy groups
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i.e. all fission neutrons appear in fast group

• no up-scattering Σ
12
= 0( )

• These equations must be discretized in 
r
r :

- finite difference approximation for spatial derivatives in leakage terms

−
r
∇⋅D

r
∇( )

- typically 15 000 unknowns for each energy group
- yields a set of algebraic equations which must be integrated over time

“fast” flux
“thermal” flux



BOUNDARY CONDITIONS

a) internal surfaces between material regions
• angular flux density must be continuous:
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For diffusion theory, this implies

- continuity of flux φ 1( ) = φ 2( )
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b) outer boundaries (free surfaces)
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establishes a relation between flux and gradient of the flux at the boundary



The Steady State and Criticality

1
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∂φ
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• Let us postulate that a steady state exists in the reactor.

• Under this condition:

-- the delay between fission and the emission of the delayed neutrons is not
significant;

-- the delayed neutron source is in equilibrium with the flux distribution;

-- the fission production operator becomes:

Fφ = χ(E) d ′E
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∫ νΣ f (
r
r ,E)φ(

r
r ,E) ≡ Fpφ + Fdφ

where ν is the total number of neutrons emitted in fission, including delayed

neutrons, and χ(E) is the total neutron emission spectrum.

• Let us also postulate that there is no external source present in the reactor (S=0).  In
that case, the steady state neutron balance equation reduces to:

Fφ

production}
= Mφ

losses}

Interpretation:

For a steady state to exist in the absence of an external neutron source, the number of
neutrons (of energy E) at each point in the domain must be exactly equal to the number
of neutrons (of energy E) eliminated at that point, including leakage to other regions or
to the exterior of the reactor.

In this situation only will the reactor be declared critical.



Criticality and the External Source

Fφ

production}
=Mφ

losses}

We observe:

• The flux level is arbitrary in a critical reactor (homogeneous equation).

• If production were to exceed losses, the flux level would increase.  The reactor then
would be said to be supercritical;

• If production were to be less than losses, the flux level would decrease.  The reactor
then would be said to be in a subcritical state.

• Let us now suppose that there is an external source present in the steady-state
reactor (S≠0).  The balance equation then becomes:

Fφs

production}
+ �� S

external
source}

��=Mφ

losses}

We observe:

• For a steady state to exist in a reactor in the presence of an external source, the
reactor must necessarily be subcritical;

• The steady-state flux level is not arbitrary in a subcritical reactor (inhomogeneous

equation).  It is in fact proportional to the intensity of the source S.

Conclusion:

• There can be only one of two conditions leading to a steady-state neutron flux (and
power) in a fission chain reactor:

⇒ The reactor is critical with no source, or

⇒ The reactor is subcritical with an external source.



Static Reactivity – The λ Eigenvalue

• Consider solutions to the steady-state diffusion equation for the following
hypothetical situations:

1) A reactor is known to be in a critical state

2) A reactor is known to be in a near-critical configuration

For case 2), we get only the trivial solution φ =0.  For case 1) we also get a trivial

solution because our knowledge of the material properties (homogenized cross
sections) is never perfect.  In order to obtain a non-trivial solution we introduce an

eigenvalue λ which will multiply the fission source term:

Mφ = λFφ

This is the appropriate form of the static diffusion equation.

• The constant λ (the eigenvalue) is unique for the whole reactor.

• It is uniformly adjusted until the critical balance between both sides of the equation is

assured at every point.  The corresponding distribution φ is called the eigenfunction.

• Mathematically, many solutions are possible.  However, there is only one value of λ

which corresponds to non-singular and positive values of φ at every point inside the

domain (the fundamental solution):

⇒ unique physically realizable solution

• The closer λ is to 1.0, the closer the system is to being critical.  If λ = 1.0, the

reactor is critical, and the fundamental solution is physically realized:

⇒ the actual (steady state) flux distribution

• The difference between 1.0 and λ is called the static reactivity:

ρ
s
= 1.0 − λ



Static Reactivity

ρs = 1.0 − λ

• The static reactivity is a measure of the uniform correction needed to make the
reactor critical (for ex. an arbitrary correction to the average number of neutrons per
fission).

• The static reactivity is a characteristic of the entire reactor, and not of any region in
particular.  The solution to the static diffusion equation is extremely valuable in
reactor design because it provides:

- an estimate of how close the system is to critical (the value of ρs)

- an estimate of the flux distribution (hence power)
if the reactor were actually

  critical.

• An estimate of the static reactivity can be obtained with Rayleigh’s quotient:

λ =
φ
0

*
,Mφ

φ
0

*
,Fφ

where the < > bracket notation denotes integration over all space and energy and

where φ
0

*  is a weighting function (called the adjoint flux).  For static reactivity, we

therefore can write:

λ =
φ0
*, F -M( )φ

φ0
*,Fφ

Note that ρs and λ have no physical units (being ratios of reaction rates).

A related concept is the effective multiplication factor, called keff.  We have keff = 1/λ, so

that:

ρ
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= 1.0 −

1.0

k
eff

=
k
eff
−1

k
eff



PERTURBATION THEORY AND THE ADJOINT FLUX

Reference: M
0
φ
0
= λ

0
F
0
φ
0

- φ
0
is a known solution

- 1− λ
0
is the reference static reactivity

Perturbation: Ex: - control rod layout
- refuellings
- structural material

We wish to evaluate −∆λ  (change in static reactivity) due to perturbations ∆M and ∆F

without solving the perturbed systems equations Mφ = λFφ( )
∆λ = λ − λ

0

Perturbation formula (first order)

∆λ =
φ
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*
, ∆M − λ

0
∆F( )φ0
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*
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0
φ
0

+O ∆φ( )2

contains only reference (unperturbed) flux

• Second order O ∆φ( )
2

accuracy is achieved when ADJOINT flux φ
0

*  is chosen as a

weighting function.

Adjoint flux

(importance function) ⇒ M
0

*φ
0

* = λ
0
F
0

*φ
0

*

λ0* = λ0( )



The Effective Multiplication Factor

k
ef f

=
φ
0

*
,Fφ

φ
0

*
,Mφ

• We see that the effective multiplication factor is simply the effective number of
neutrons produced for each neutron eliminated in the system (by absorption and
leakage).

• In elementary reactor theory, this factor is often expressed as the product of factors
relating to the reproduction cycled of neutrons from one generation to the next (the
six factor formula):

keff = k∞ ⋅ Λ fΛt

�������= εη fp ⋅ (Λ fΛt )

where: Ex.: CANDU

ε fast fission factor 1.027
η resonance escape probability 0.907
f thermal utilization factor 0.906

Thermal reproduction factor (νΣ f / Σa in�fuel) 1.224

Λ f non-leakage probability for fast neutrons 0.994

Λ
t

non-leakage probability for thermal neutrons 0.974

Thus we have:

0 < k
eff

< ∞

−�∞ < ρ
s
< 1.0

with:

State Flux keff ρ
s

subcritical ↓ <1.0 <0

critical → =1.0 =0

supercritical ↑ >1.0 >0



φ0  -- Unperturbed Flux

φ  -- Perturbed Flux

-xp xp a-a

• ADJOINT WEIGHTING (simple example)

Example:

- localized perturbation
- simple 1-D geometry
- 1 energy group

With uniform properties in one energy group, the reference solution is obtained:
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
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
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
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�� from�boundary�conditions;�B
2
�is�geometric�buckling�(curvature)

Inserting

Inserting�
d
2φ

dx
2
= −B2φ ��into�the�reference�solution�above�gives:

λ0 =
D0B

2 + Σa0

νΣ fo

���������������keff 0 =
1

λ0

Unperturbed eigenvalue

• Perturbation: localized at center, with small effect on flux.  We will assumeφ = φ
0
 in

the range from –xp ≤ x ≤ xp           (i.e. cos Bx~1.0)

• Adjoint equation: with one energy group,

M0

* =M

F0

* = F






 so that φ0

* = φ;����adjoint flux is equal to real flux



Consider two cases, for localized perturbation ∆Σ
a
:

No Adjoint Weighting Correct Formula

∆ρ =

− dx∆Σa
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= 2
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
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xp

a

27% higher, which accounts for the fact
that neutron importance is greater in

center than at the periphery.

Conclusion:

-- Importance weighting is essential

-- Generally, φ
g

*
(r) ≠ φg (r)�����(with�more�than�one�energy�group)
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